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Abstract

We model the genealogies of coupled haploid host–virus populations. Hosts reproduce and replace other hosts as in the Moran

model. The virus can be transmitted between individuals of the same and succeeding generations. The epidemic model allows a

selective advantage for susceptible over infected hosts. The coupled host–virus ancestry of a sample of hosts is embedded in a

branching and coalescing structure that we call the Ancestral Infection and Selection Graph, a direct analogue to the Ancestral

Selection Graph of Krone and Neuhauser [1997. Theoret. Population Biol. 51, 210–237]. We prove this and discuss various special

cases. We show that the inter-host viral genealogy is a scaled coalescent. Using simulations, we compare the viral genealogy under

this model to earlier published models and investigate the estimatability of the selection and infectious contact rates. We use

simulations to compare the persistence of the disease with the time to the ultimate ancestor.

r 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Over the last decade, researchers have used viral
evolutionary genetics to test hypotheses and/or estimate
parameters relating to the epidemiology of disease (see,
for example, Holmes et al., 1995; Twiddy et al., 2003;
Pybus et al., 2000). In particular, the use of coalescent-
based methods which rely on genealogical-based esti-
mates of population parameters has been popular
(Pybus et al., 2000). These methods use the genealogy
of viruses, each obtained from a different host, to make
inferences about host population dynamics. However,
given that viruses are transmitted both horizontally (i.e.,
by contact) and vertically (from parent to child), it is not
e front matter r 2005 Elsevier Inc. All rights reserved.
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immediately apparent that naive coalescent-based meth-
ods are appropriate.

To explore this, we set up and analyse a model of the
coupled host–virus genealogies of a panmictic host
population. Our approach is to make appropriate
modifications to the model of Moran (1958), an explicit
model of mutation and selection. The genealogy process
determined by the Moran model is well approximated
by the ancestral selection graph (ASG) process of Krone
and Neuhauser (1997). In a similar sense, the ancestral
infection and selection graph process specified here
approximates the genealogy and infection processes in
our idealised host–virus populations.

We consider a population of N host individuals.
Hosts are susceptible to, or infected with, a virus. Label
susceptible individuals type AS and infected individuals
type AI . Infected individuals reproduce at constant rate

www.elsevier.com/locate/ytpbi
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lI . Susceptible individuals reproduce at a possibly
higher rate lS. For some sNX0, let

lS ¼ lI ð1 þ sN Þ. (1)

Throughout this paper we treat fertility selection, that is,
selective advantage arising from higher birth rate. Viral
infection can lead to selective advantage based on lower
death rate for susceptible individuals, so-called ‘‘viabi-
lity selection’’. The models we present may be adapted
to this case and lead to similar results.

An uninfected parent cannot spontaneously produce
infected offspring, so offspring of type AS parents are
type AS. However, an infected parent may vertically
transmit the virus to its offspring. Suppose offspring of
type AI parents are type AI with probability ð1 � uNÞ,
and type AS otherwise. Non-transmission of infection
from an infected parent to its child corresponds to a
mutation event.

The virus is spread horizontally within the population
via infectious contact events. These events are initiated
by all hosts at constant rate lI cN , for some cNX0. The
initiating host (the initiator) chooses another host (the
target) uniformly at random from the host population,
including itself. The virus may pass between the two
depending on their types immediately prior to the event.
If just one of the two individuals is infected, both
individuals emerge infected. If either both are infected,
or both are susceptible, the contact event has no effect.
See Table 2. Regarding contacts between infected
individuals as ineffectual is equivalent to assuming no
super-infection of hosts. In Section 4, we discuss an
asymmetric scheme where only infected hosts may
initiate contact.
Type before contact
 Type after contact
Initiator T
arget I
nitiator T
arget
(2)
S
 S
 S
 S

S
 I
 I
 I

I
 S
 I
 I

I
 I
 I
 I
Finally, host individuals arrive via a migration process
at rate lIb. Migrants are susceptible with probability p

and otherwise infected. Migrants replace an individual
chosen uniformly at random from the population of
hosts.

We represent the level of infection in the population
at time t as a continuous time Markov chain
Y ðtÞ ¼ ðY SðtÞ;Y I ðtÞÞ, where Y kðtÞ is the number of
individuals of type Ak at time t, k ¼ S; I . Clearly,
Y SðtÞ þ Y I ðtÞ ¼ N. If Y SðtÞ ¼ j, j 2 f0; . . . ;Ng, the
following transitions occur:

j�!

j þ 1 at rate lSj
ðN � jÞ

N
þ lI uNðN � jÞ



ðN � jÞ

N
þ lIbp

ðN � jÞ

N
;

j � 1 at rate lI ð1 � uN ÞðN � jÞ
j

N
þ 2lI cNj



ðN � jÞ

N
þ lIbð1 � pÞ

j

N
:

8>>>>>>>>>><
>>>>>>>>>>:

(3)

In order to simplify the study of the birth–death process
(3), we analyse instead the diffusion approximation of
the related scaled proportion processes,
ðY I ðtÞ=N;Y SðtÞ=NÞ in the limit N ! 1 (see, for
example, Ewens, 1979). Following Krone and Neuhau-
ser (1997), units of time are chosen so that lI ¼ N=2,
and we suppose there exist constants Co1 and g40
and real scalars m;s and y so that

jNcN � mjpCN�g

jNsN � sjpCN�g

jNuN � yjpCN�g

9>=
>; for all sufficiently large N. (4)

In the limit N ! 1, the proportion of susceptible
individuals, Y SðtÞ=N, is a diffusion process, W ðtÞ on
½0; 1�, with drift

aðxÞ ¼ ððyþ pbÞð1 � xÞ � ð1 � pÞbx � 2mxð1 � xÞ

þ sxð1 � xÞÞ=2 ð5Þ

and diffusion bðxÞ ¼ xð1 � xÞ. The equilibrium density
hðxÞ, x 2 ½0; 1� for a realisation, W ðtÞ ¼ x, of the
proportion process is given by Wright’s formula (see,
for example, Ewens, 1979)

hðxÞ ¼ Kxyþpb�1ð1 � xÞð1�pÞb�1e�ð2m�sÞx, (6)

where K is a normalising constant.
The process defined above is related to the Moran

process. Consider a Moran process with susceptible and
infected individuals reproducing and replacing one
another uniformly at random over the population. In
such a process, susceptible individuals generate infected
individuals by an event in which a susceptible gives
birth, mutates from susceptible to infected, and replaces
a susceptible individual. This leads to terms like
lSuNj2=N in the rate for j ! j � 1. In contrast, in the
model above, susceptible individuals generate infected
individuals by initiating contact events with infected
individuals. As a consequence, (3) contains the term
lI cNjðN � jÞ=N. Direct mutation from susceptible to
infected is represented by infected host migrants
replacing susceptible hosts, a process with rate
lIbpj=N. However, it follows from (4) that these three
terms are OðNÞ. The models have the same diffusive
limit for the proportion of susceptibles, up to a
parameterisation. If, in the scaled Moran process, yI is
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Fig. 1. A percolation diagram realisation of the infection model for

N ¼ 8. If at time t ¼ 0, individuals at sites f1; 3; 5; 7g are susceptible

and the rest infected then, propagating types according to the rules set

out in the text, at t ¼ T individuals at sites f4; 5; 6g are susceptible and

the rest infected.
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the mutation rate from AI to AS, yS the rate for the
reverse event, if ŝ is the selective advantage of type AS

over AI , and X ðtÞ is the diffusion on ½0; 1� of the
proportion of type AI individuals in the population,
then X ðtÞ has drift aðxÞ ¼ ðySð1 � xÞ � yI x � ŝxð1 �

xÞÞ=2 and diffusion bðxÞ ¼ xð1 � xÞ. The diffusions
W ðtÞ and X ðtÞ are equivalent when yS ¼ yþ pb, yI ¼

ð1 � pÞb and ŝ ¼ 2m� sX0. Differences between the
genealogy-graph processes determined by the two
models are discussed in Section 2.

The idealised infection is never truly endemic. In the
absence of immigrant infection, when p ¼ 1 or b ¼ 0,
the right-hand boundary, W ðtÞ ¼ 1, is attainable and
absorbing, in the sense of Karlin and Taylor (1981) (see
Section 6 of Chapter 15), and therefore an exit
boundary. Regardless of the initial state, it is reached
in finite expected time with probability 1. Since the drift
and diffusion terms are zero there, the process remains
in that state after reaching it. However, the role of
immigration in the model is not to impose a spurious
persistence for the disease, but rather to allow host and
viral ancestral lineages to terminate outside the model-
population. In Section 4, we explore the process using
numerical simulations. In these simulations, and others
which we do not report, we find that, for values of the
parameters m, s and y which are at least plausible, the
infection persists for several times N generations with-
out immigration. This time will often be large compared
to the time scale over which the background parameters
of the biological population can be assumed constant.
The presence of infected host in a sample indicates the
process is not in equilibrium. This is discussed further in
Section 2.
2. Graphical representations

A realisation of the infection process (3), acting in a
population of hosts, can be represented via a percolation
diagram. A realisation of the history of the infection for
a sample of hosts is a subgraph of this diagram. In limit
(4) of large populations, the subgraph process converges
to a graph process we define below. We call this limiting
graph process the ancestral selection and infection graph
process. The proof can be adapted almost unchanged
from Krone and Neuhauser (1997). These authors set up
a percolation-diagram representation for the Moran
model, and established the corresponding limiting ASG
process.

2.1. The forward model

A realisation of the infection process is simulated as
follows. Refer to Fig. 1 for an instance. Let I ¼ f1 . . .Ng

be the set of N site labels for a population of N hosts.
The sites correspond to the vertical lines in Fig. 1 with
time increasing down the page. Arrows representing
birth and contact events are drawn between the sites on
the space I 
 ½0;1Þ. The times and types of these events
are simulated by thinning independent Poisson pro-
cesses. This is done in such a way that the individual
occupying any particular site encounters events at a rate
appropriate for their infection type.

For each ordered pair of sites ði; jÞ we simulate a

Poisson process with rate lI ð1þsNþcN Þ

N
. At each arrival time

t we draw an arrow from site i to site j at time t. To
decide the type of this event we draw a uniformly

distributed random variable, v 2 ½0; 1�. If vo lI

lI ð1þsNþcN Þ

label the arrow I , if v 2 ½ lI

lI ð1þsNþcN Þ
; lS

lI ð1þsNþcN Þ
Þ label the

arrow S, otherwise v 2 ½ lS

lI ð1þsNþcN Þ
; 1� and we make the

arrow double-headed and label it C.
At an I-arrow from site i to site j offspring from a

birth at site i replaces the individual at j. This event
occurs irrespective of the type at i. At an S-arrow from
site i to site j, offspring from a birth at site i replaces the
individual at j but only if the type of the individual at
site i is AS. This ensures that type AI individuals
encounter birth events at rate lI and type AS at rate
lI þ sNlI .

Each time we simulate an I arrow (from i to j say) we
simulate an independent event with probability uN and
place a dot on the arrow if this event occurs. If the
individual at i is type AI and the dot is present, the
offspring of i replacing the individual at j is type AS. In
all other cases the offspring is the same type as the
parent. In this way we simulate non-transmission of
infection at birth.
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For each site i ¼ 1; 2; . . . ;N, we simulate a migration
process at rate lIb=N. Each arrival of the migration
process is indicated by a dot, and marked S with
probability p (the host individual at site i is replaced by a
type-AS host) and otherwise I (replacement by a type-AI

host). We will refer to the dot process (non-transmission
events on I-arrows and I- and S-immigration events) as
the mutation process.

A C-arrow connecting sites i and j represents contact
between the individuals at i and j. The infection may
pass between them according to the rules in Table 2. We
make the arrow double-headed to indicate that the virus
may travel in either direction along the arrow.

If at a given time we know the type at every site, we
can propagate the types forward in time, using the
percolation diagram to keep track of both the host and
viral genealogies.

2.2. The ancestral infection and selection process

Where data is available from a small sample npN of
individuals from a much larger population, it is
convenient to simulate ancestral and infective history
for subsets of individuals without simulating the
corresponding history for the entire population. Follow-
ing Krone and Neuhauser (1997), we define a dual
percolation process which gives us this information. A
realisation of the dual percolation process is a subgraph
of the percolation diagram realised by the forward
process. The example pictured in Fig. 2 is derived from
the realisation of the forward process depicted in Fig. 1.

We obtain a realisation of the dual percolation
process as follows. Using the forward process simulate
a percolation diagram from time t ¼ 0 to time t ¼ T

omitting mutation events. Define a new time scale, ‘‘dual
Fig. 2. The dual process for the infection model obtained by reversing

the direction of time and the direction of the arrows in Fig. 1.
time’’, which increases into the past with dual time equal
to t0 at time T . Reverse all arrows in the forward process
so that arrows point to ancestors. Consider a sample of
n hosts drawn from the N at dual time t0. Beginning at t0
at the sites corresponding to the n individuals in the
sample, trace the ancestral lineages of the sample hosts
and their infections back through the percolation
diagram to dual time t0 þ T . Traced lineages branch
and coalesce and thereby determine a subgraph of the
full percolation diagram. This subgraph is a realisation
of the dual percolation process. We illustrate the process
for the n ¼ 3 individuals at sites 2, 5 and 8 at dual time
t0 in Fig. 2.

Consider site 2 in Fig. 2. At dual time t1 the offspring
of the individual at site 1 replaces the individual at site 2.
This is an I-birth, so it occurs irrespective of the type of
the individual at site 1. In the dual process, the
individual at 1 is the ancestor of the individual we are
tracing, so we follow the arrow from site 2 to 1.
Similarly, we follow the I-arrow at t4 to an ancestor at
site 3. We ignore the arrow at t6. It is incoming in the
dual, corresponding to a birth from site 3 in the forward
process. At t8, a C-arrow connects site 3 and site 7.
Infection could have entered site 3 at this time
depending on the types of the two individuals in
contact. We do not know the types but we wish to keep
track of the ancestry of any infection, so we branch at
this point. We follow the potential infection-ancestry to
site 7 while at the same time following site 3. Continuing
back in time, we follow the I-arrows at times t9, t10 and
t11. We approach time t12 following paths at sites 3 and
6. At time t12, we find that the ancestor of the lineage at
site 6 came from site 3, so we follow the arrow from site
6 to site 3. The two lineages coalesce to a single lineage.
The history of the individual at site 5 at time t0 is
retraced in a similar way. At time t2, we encounter an S-
arrow in the dual. The ancestor of the individual at site 5
could come from site 6 if site 6 was type AS at this time.
Since we do not know the types of the individuals we
follow both paths, 5 and 6. Continuing in this way, we
obtain the combined ancestral and infective history
shown in bold in Fig. 2.

Because the forward process is reversible, and events
on each site are realised independently, the dual
subgraph may be simulated in dual time from the n

sites present at t0 to arbitrarily large dual times. There is
no need to simulate events in lineages outside those in
the dual subgraph or work on a percolation diagram
realised by the forward process with T fixed. For the
applications we have in mind, it is convenient to stop the
dual process at the first (coalescence) time the number of
lineages in the dual process becomes one. In Fig. 2 that
time is t12. The individual at the point of coalescence is
ancestral to all the sample individuals. Any infection it
carries is ancestral to any infection they carry. Let tN

UA

denote the dual time of this joint ultimate ancestor.
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Fig. 3. The dual graph at left is derived from the dual percolation subgraph in bold in Fig. 2. Mutation events on the dual percolation subgraph in

Fig. 2 determine corresponding events on the dual graph at left in Fig. 3. The individual at the top of the graph is infected. Tracing infection type

down the graph, we obtain the graph at centre left. Bold lines indicate infected lineages. Given infection type at the leaves we can trace (centre right,

bold subtree) the genealogy of the virus and (right, bold subtree) host up the tree from the tips.
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Fig. 4. Rules determining infection type and ancestry below a branching event at time t in the dual graph: infection types at dual times tþ and t� are

indicated above and below the branching; an arrow indicates the incoming edge, the thick lines follow host ancestry, the dashed lines follow infection

ancestry. Top row: rules for contact branchings. Bottom row: rules for selection branchings. In C4, S1, S3 and S4, no infection is present on the

branching edge at t� so no infection ancestry is indicated.
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Mutation events may be simulated on the dual
subgraph. Given the infection type of the joint ultimate
ancestor, infection type is then determined at all points
on the dual subgraph. For example, in Fig. 2, if the
individual at site 3 is infected at dual time t12 then at
dual time t0, the individuals at sites 2 and 8 are infected,
while the individual at site 5 is susceptible. Once
infection types have been propagated down the dual
subgraph, ancestry of hosts at S-arrows and ancestry of
infection at C arrows is decided. The genealogy of the
individuals in the dual subgraph at dual time t0, and the
genealogy of any infection they carry, can then be traced
back to dual time t0 þ T .

Having described the dual percolation subgraph
process we now define a near equivalent graph process
containing just those events in the subgraph process
which are needed for the propagation of infection type
down the graph, or ancestry up the graph. Site labels are
dropped from the dual subgraph and paths made up of
sequences of I-arrows are represented by a single edge.
Coalescing and branching events, and branching event
types (C or S) are recorded. We call this cut-down
realisation the dual graph. The dual graph in Fig. 3
summarises events shown in the bold subgraph of Fig. 2.

Denote by GN;n the process realising dual graphs for
samples of size n drawn from a population of size N.
The graph on the left in Fig. 3 is a realisation of G8;3.
Note that a realisation of GN ;n does not include
mutation events, or details of infection type or ancestry.
The mutation process on the dual percolation subgraph
determines a mutation process YN ;n on realisations of
GN ;n, i.e., on dual graphs.

Rules for propagating infection type and ancestry
through branching and mutation events in the dual
graph are given in Figs. 4 and 5.

Consider a branching event at dual time t. Immedi-
ately below the branching event, at dual time t�, we
have a single edge, which we refer to as the branching

edge. Immediately above the branching event, at dual
time tþ, we have two edges. One of these two edges is
labelled the continuing edge (it corresponds to the path
in the dual subgraph that continues on the original site)
and the other incoming. We place an arrow on the
incoming edge where it connects to the branching edge.
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AI
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Fig. 5. Rules determining infection type and ancestry below a mutation event (indicated by a dot). The thick lines follow host ancestry and the

dashed lines follow infection ancestry. Mutations M1–4 generated by migration are marked I or S according to the migrating host type (AI or AS).

Mutations M5–6 generated by non-transmission at birth are unlabelled. Host ancestry continues through non-transmission events. All ancestry

terminates at migration events. In M2, M4 and M6, infection ancestry above the mutation is not indicated, as it is unrelated to ancestry below the

mutation.

D. Welch et al. / Theoretical Population Biology 68 (2005) 65–7570
At an S-branch, the host on the edge immediately below
the branching, at t�, is descended from the host on the
incoming edge if the incoming edge is type AS at tþ. At a
C-branch, infection immediately below the branching,
at tþ, is descended from infection on the incoming edge
if, at tþ, the incoming edge is type AI and the continuing
edge is type AS. Black dots on the dual graph are either
unlabelled and represent non-transmission of the virus
or are labelled and represent an immigration event. The
type on an edge immediately below an unlabelled black
dot is therefore AS, regardless of the type above the dot.
The type below a labelled dot is type AS or AI depending
on whether the label is S or I . The ancestry of both the
infection and the host below a labelled black dot is
unrelated to the ancestry above the dot. In Fig. 3,
simulated dual-graph genealogies for sampled host and
sampled infection determined by the percolation sub-
graph shown in Fig. 2 with an ultimate ancestor of type
AI are shown.

The dual-graph and mutation processes, GN ;n and
YN ;n, together converge in distribution, in the limit N !

1 defined in (4), to processes Gn and Yn. We refer to Gn

as the ancestral infection and selection graph process
(AISG-process) and to Yn as the mutation process.
Instantaneous rates for events in Gn are given in terms of
the parameters of the diffusion process W ðtÞ, defined
below (4), as follows. If at dual time t the AISG-process
has k lineages, then each pair of lineages coalesces at
rate 1, each lineage C-branches at rate m and S-branches
at rate s=2. A realisation of Gn starts at time t0 with n

lineages and terminates at the first time that k becomes
one, tUA say. The Yn-process realises non-transmission,
and S and I immigration events, independently on each
lineage at rates y=2, pb and ð1 � pÞb, respectively.

Given the infection type of the joint ultimate ancestor,
the infection type and ancestry at all points on all
lineages of a realisation of Gn and Yn is determined
according to the rules set out in Fig. 5. A detailed
justification that Gn and Yn are the limiting processes of
the dual graph and mutation processes follows Krone
and Neuhauser (1997) closely, and is therefore omitted.
The following summary emphasises points of difference.

A realisation of GN ;n may contain events of a type
which cannot be generated by Gn. These are vertices of
degree four, corresponding to events in the dual process
in which an S or C arrow links two lineages already in
the dual. These events are called collisions. Fig. 2
contains no collision events. An S-collision would have
occurred if, for example, the S-arrow at dual time t2
connected sites 1 and 5, instead of 5 and 6, since site 1
has a traced lineage at t2 whereas site 6 does not.
Similarly a C-collision would have occurred if the C-
arrow at dual time t8 connected sites 3 and 6 rather than
3 and 7. We stipulate that at each collision, a single
fictional lineage is created and is allowed to evolve like
all other lineages. If, at dual time t, graph process GN ;n

has k lineages, each lineage encounters incoming S

collisions at rate ksN=2, C collisions at rates kcN and S

and C branchings at rates ðN � kÞsN=2 and ðN � kÞcN .
Each pair of lineages in GN ;n coalesce at rate 1.

Consider a dual graph process, G%

N ;n, derived from a
Moran process (as described in Section 1) with selective
advantage s%

N ¼ 2cN þ sN . If G%

N ;n has k lineages, each
lineage branches at rate ðN � kÞs%

N=2 and encounters
collisions at rate ks%

N=2. At collisions, a single fictitious
particle is created. Each pair of lineages coalesces at rate
1. If we ignore the labels on branches and collisions in
GN ;n then G%

N;n and GN ;n are identical. Krone and
Neuhauser (1997) show that in the limit N ! 1, G%

N ;n is
the ASG G%

n with branching rate s%=2 ¼ ð2mþ sÞ=2.
The S- and C-branch (collision) labels can be indepen-
dently imposed on GN ;n and Gn, i.e., a branch (collision)
is labelled S with probability s=ð2mþ sÞ, otherwise, it is
labelled C with probability 2m=ð2mþ sÞ. It follows
immediately that in the limit N ! 1, GN ;n ¼ Gn.

The dual mutation process YN ;n may include non-
transmission events at the same dual time as coalescing
events in GN ;n. These simultaneous events almost surely
do not occur in the Yn process. Krone and Neuhauser
(1997) show that the probability of these events
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occurring in YN;n tends to 0 as N ! 1. The immigra-
tion events in YN ;n and Yn occur as independent Poisson
process along the edges of GN ;n and Gn. The process
YN ;n is the combination of these two ‘‘mutation’’
processes (i.e., non-transmission and immigration). It
follows from the above remarks that YN ;n and Yn are
equivalent in the limit N ! 1.

Notice that the features by which the ASG and the
AISG differ, namely in the rules for the propagation of
types down the tree and ancestry up the tree, play no
part in the discussion of the limit graph process.

The graph process Gn resembles the two-locus
ancestral graph process of Griffiths (1991), the complex
disease process of Fearnhead (2003) and, in particular,
the ancestral influence graph (AIG) process of Donnelly
and Kurtz (1999). The AIG process models the joint
genealogies of two genes at linked loci observed in a
sample of individuals from a population subject to
selection and recombination. The original ASG process
of Krone and Neuhauser (1997) can be thought of as a
special case of both AIG and AISG processes. As in the
AISG, one AIG contains two intertwined genealogies.
Also, branching events in the AIG process are of two
types, accounting for the effects of selection and
recombination. However, lineages in the AIG are
identified as ancestral at one or both loci. The
instantaneous dynamics of the AIG and AISG differ
in the following way: in the AIG-process recombination
branchings occur only on lineages ancestral at both loci;
in the AISG lineages are not distinguished, so that
contact branchings occur at a constant rate on all
lineages. For this reason we have not looked for any
simple mapping from closed form results for expecta-
tions in the AIG-process and those of the AISG-process.
The exception are those properties shared by both
processes and the ASG itself.
3. Properties of the embedded genealogies

The Gn and Yn processes determine a marginal
distribution for the genealogy of the virus. This
marginal distribution is of interest in its own right, as
a model of inter-host viral genealogy. In this section we
show that the marginal viral genealogy is a coalescent
process with population size given by a diffusion. The
intra-host viral genealogy may be simulated directly,
without the need to simulate host genealogies. In future
work we will be concerned with fitting the joint
host–virus model to sequence data, and in particular,
estimating the contact and selection parameters, m and
s. Neuhauser and Krone (1997) have shown that
genealogies determined from the ASG by the simplest
two-type symmetric substitution process are rather
insensitive to the selection parameter, making estima-
tion difficult. We present simulation results which show
that the m-dependence of genealogies in the AISG is
somewhat stronger than the s-dependence.

Inter-host viral genealogies have been modelled by
previous authors (see for example Holmes et al., 1995;
Pybus et al., 2000) using the Kingman coalescent. In
these models, the effective population size is
Ne ¼ Nð1 � xðtÞÞ, where N is the total number of hosts
and xðtÞ is the proportion susceptible at time t. The
behaviour of Ne back in time is variously modelled as
constant, growing exponentially (Holmes et al., 1995) or
piecewise constant to approximate arbitrary continuous
change (Pybus et al., 2000). In the AISG, the size of the
infected population is Nð1 � W ðtÞÞ with W ðtÞ, the
proportion of susceptible hosts in the population at
time t, defined in Section 1.

Theorem 3.1. If at time t the population fraction of

susceptibles is W ðtÞ ¼ x then, in dual time, and in units of

N generations,
(1)
 each pair of lineages in the genealogy of the virus

coalesces at instantaneous rate ð1 � xÞ�1,

(2)
 each pair of infected lineages in the host genealogy

coalesces at instantaneous rate ð1 � xÞ�1 and each

pair of susceptible lineages coalesces at instantaneous

rate x�1.
Proof. The result is essentially identical to that given in
Kaplan et al. (1988) for the marginal coalescent of a
selected allele. Consider the dual percolation process.
Denote by j the number of susceptibles in the host
population at dual time t. Take two infected individuals
at random from the set of pairs of infected individuals at
t ¼ 0 and trace their viral lineages back to dual time t.
Suppose they do not coalesce in ½0; tÞ. The two viral
lineages sampled at dual time t by this procedure are a
random draw from the set of pairs of viral lineages
present at time t. In forward time an infected lineage
generates infected individuals through birth and contact
at rate lI ð1 � uNÞ þ lI cN and, since it may choose its
own site, the probability that any one of the N � j

infected individuals in the next generation is the
offspring of that branching event is 1=ðN � jÞ. It follows
that in dual time a pair of viral lineages in the dual
percolation process coalesce at instantaneous rate
2lI ð1�uNÞ=ðN � jÞþ2lI cN=ðN� jÞ. Taking N!1 sub-
ject to (4), the second term vanishes and the first term,
2lI ð1 � uN Þ=ðN � jÞ ¼ 2 N

2
ð1 � y

N
Þ 1
ð1�xÞN

¼ N�y
ð1�xÞN

! 1
1�x

.
The proof of (2) is similar. &

Theorem 3.1 tells us how to simulate viral genealogies
backwards in time. Denote by ~W the reversed diffusion
~W ðtÞ ¼ W ð�tÞ. If both W ¼ 0 and 1 are not absorbing,
~W ðtÞ is identical in distribution to W ðtÞ. If one or both

of W ¼ 0 and 1 are absorbing, the reverse process
starting from ~W 2 ð0; 1Þ is identical in distribution to W
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in ð0; 1Þ. In these cases the process ~W is killed at W ¼ 1
or absorbed at W ¼ 0 as appropriate. We are assuming
the ‘‘return processes’’ (see Tavaré, 1979) from absorb-
ing boundary W ¼ 0 adds one susceptible to an all-
infected population and from absorbing boundary W ¼

1 adds one infected individual. When both W ¼ 0 and 1
boundaries are absorbing it may be realistic to condition
on entry from W ¼ 1. Coop and Griffiths (2004)
describe and make statistical inference for a problem
of this kind.

In order to simulate directly the marginal viral
genealogy given an initial population fraction W ð0Þ ¼
x0 of susceptibles, simulate ~W ðtÞ by simulating W ðtÞ ¼

xðtÞ from W ð0Þ ¼ x0 in forward time from t ¼ 0 and
then setting ~W ð�tÞ ¼ xðtÞ. Simulate coalescence times in
the viral genealogy conditional on this realization of
~W ðtÞ at increasing positive dual times. The simulation

stops when the number of viral lineages reaches 1. This
must occur before the ~W process is killed in the case
W ¼ 1 is absorbing, as the infected population shrinks
to zero. Notice that the marginal viral genealogy need
not be a connected graph when immigration with pb40
is present. For simulations, we approximate W ðtÞ by the
Moran process Y described by rates (3) with b ¼ 0 and
N large.

The host genealogy is embedded within a realization
of the ASG process. In order to simulate a host
genealogy, we could first simulate a realization g0 of
the ASG with branching rate s, and then simulate
contact branches conditioned on g0. The result is a
realization, Gn ¼ g1 say, of the AISG which contains g0

as a subgraph. Host and viral ancestry is determined
from infection types entering vertices of g1, which are in
turn realized by simulating Yn over g1. Now, referring to
Fig. 4 C1–4, host lineages do not follow contact
branches, so the host genealogy is itself a subgraph of
g0. The effect of contact, like the effect of non-
transmission, is to determine the path taken by the host
genealogy through the ASG. These observations do not
lead to a direct simulation scheme for the marginal host
genealogy, since host infection status is not available at
all dual times.

We simulated marginal viral trees in order to compare
their distribution with that of a standard coalescent
process, Kn say. We estimated the distribution of inter-
coalescence times for an initial sample of size n ¼ 10,
and initial frequency of susceptibles, x0 ¼ 0:5, simulat-
ing genealogies using the prescription above. We
compare these times with inter-coalescence times for
viral genealogies in populations with a constant
proportion xðtÞ ¼ 0:5 of infecteds. Results for parameter
values m ¼ 2, s ¼ 1 and y ¼ 1:5 are summarised in Fig.
6. For these parameter values we estimate
EG10

½TMRCVA� ¼ 0:51ð1Þ under the diffusing model, and
calculate EK10

½TMRCVA� ¼ 0:90 under the model with
constant (infected) population size Nð1 � xÞ ¼ N=2.
Diffusion-model variance is larger, relative to its mean:
varG10

½TMRCVA� ¼ 0:23 for the diffusing case and
varK10

½TMRCVA� ¼ 0:29 in the constant case. Patterson
(2004) shows that if the proportion of susceptibles is
neutrally diffusing (i.e., has zero drift everywhere and
diffusion coefficient xð1 � xÞ), the expected coalescence
times are the same as that under the constant proportion
model. Patterson (2004) gives a coalescent simulation
algorithm which avoids the need to simulate ~W ðtÞ at
times which are not coalescent times. Our simulations
show that we cannot expect equivalent results to hold in
our setting.

Finally in this section, we use simulations to
investigate the sensitivity of the embedded genealogies
to changes in parameters s and m for fixed y. Such
variation plays an important role in parameter estima-
tion. We look at the case where there are k leaves all of
which are infected (results are given for k ¼ 10). We fix
nXk (n ¼ 20 below) and simulate multiple realizations
of the AISG and type processes ðGn;YnÞ. The host and
viral genealogies of a randomly chosen subset of k

infected leaves are then extracted. If the realization of
ðGn;YnÞ lacks k infected leaves the sample is discarded.
This thinning procedure simulates the host and viral
genealogies of k individuals selected at random from the
infected host population. It would be more efficient, but
less convenient, to add leaves and make conditional
simulation until k infected leaves were generated.

Mean surfaces for various statistics of interest
obtained from simulations with fixed y ¼ 1 are
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presented in Fig. 7. Embedded genealogies are more
sensitive to changes in the contact parameter m than to
changes in the selection parameter s. The statistic in Fig.
7(d) is calculated as follows. Denote by LðE

g
hÞ and LðEg

vÞ

the summed length of edges in the host and viral
genealogies, and by LðE

g
h;vÞ the summed length of edges,

or parts of edges present in both genealogies. The
statistic E½2LðE

g
h;vÞ=ðLðE

g
vÞ þ LðE

g
hÞÞ� plotted in Fig. 7(d)

is a natural measure of the distance between the host
and viral genealogies.

Neuhauser and Krone (1997) took a sample of 30
ASG genealogies subject to selection of s ¼ 2 and
considered the hypothesis that the sample was drawn
from a neutral model. They constructed a test statistic
based on root times and found that the neutral model
could not be rejected. In our simulations large sampling
variances overwhelm small variations in mean. For
example, in Fig. 7(d), the standard deviation of
2LðE

g
h;vÞ=ðLðE

g
vÞ þ LðE

g
hÞÞ is about 0.13, which is similar
in magnitude to the variation across the surface.
Accurate estimation of m or s will require large sample
sizes of infected hosts. New data types may help.
Sequence data gathered at different time points and
data measuring xðtÞ directly entail new estimation
schemes, but will be informative.
4. Special cases

The infection model and AISG-process described in
Section 1 belong to a class of models for the joint
ancestry of host and parasite. In this section, we
consider a model with no immigration and a model
with an asymmetric contact process. The immigration
process of Section 1 terminates host ancestry at both
infected and susceptible host immigration events. A viral
immigration (for example, a zoonosis) at rate lIb

%
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Fig. 8. Estimated probability densities for the hitting time of the boundary W ðtÞ ¼ 1 starting at W ðt0Þ ¼ 0:5 with parameter values (a) NcN ¼ m ¼ 4,

NsN ¼ s ¼ 1, NuN ¼ y ¼ 2 and (b) NcN ¼ m ¼ 5, NsN ¼ s ¼ 5, NuN ¼ y ¼ 3. 1500 realisations of each of three processes were simulated: (solid

lines) W ðtÞ the diffusion process of (5) simulated with Gaussian increments, and the jump process (3) with N ¼ 200 (dashed lines) and with N ¼ 400

(dotted lines).
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which does not terminate host ancestry is quite
tractable.

When there is infection in the population, but no
immigration, the infection descends from the joint
ultimate ancestor, which has type AI . For this scenario
to be physically relevant, the infection must remain
within the population for a time comparable to the time
to the joint ultimate ancestor, tUA, and increases as 2mþ

s increases. The expected time that the infection persists
is the expected time to hit the absorbing boundary at
W ðtÞ ¼ 1 and increases as 2m� s increases.

If b ¼ 0, the diffusion process W ðtÞ describing the
proportion of susceptibles in the population has drift
aðxÞ ¼ ðyð1 � xÞ � ð2m� sÞxð1 � xÞÞ=2. This has zeros at
x ¼ 1 and x ¼ y=ð2m� sÞ. Since x 2 ½0; 1�, aðxÞ40 when
y=ð2m� sÞo0 or 41 and, in these cases, the process is
attracted to the absorbing boundary at W ¼ 1. The
process remains on the interior of the space longest
when y=ð2m� sÞ 2 ð0; 1Þ and 2m� s is large. In this case,
y=ð2m� sÞ is a stable fixed point of the drift coefficient
and the denominator 2m� s determines the strength of
the restoring drift to that point.

The expected persistence time of the epidemic can be
compared with the expected time to the joint ultimate
ancestor, tUA, which can be calculated from Krone and
Neuhauser (1997) via

En½tUA� ¼ 2 1 �
1

n

� 	
þ 2

Xn�1

r¼1

1

rðr þ 1Þ

e2mþs

ð2mþ sÞrþ1




Z s

0

trþ1e�tdt, ð7Þ

where n is the sample size and 2mþ s is the total
branching rate. The value of En½tUA� increases rapidly as
the sum 2mþ s increases.

Using simulation we estimate the length of time that
an infection persists. Fig. 8(a) summarizes a simulation
study for parameter values m ¼ 4, s ¼ 1, y ¼ 2 and
W ð0Þ ¼ 0:5. These values gave an expected hitting time
equal 13N generations. Fig. 8(b) shows results for m ¼ 5,
s ¼ 5, y ¼ 3 and W ð0Þ ¼ 0:5. The expected hitting time
was approximately 2.8N generations. For Fig. 8(a),
2mþ s ¼ 9, and (7) gives E2½tUA� � 200N generations,
while for Fig. 8(b), 2mþ s ¼ 15, and we find E2½tUA� �

30; 000N generations. Either immigration plays an
important role, or the diffusive limit based on scaling
relations (4) is not physically relevant. When the latter
applies it may be necessary to fit data to the dual
processes GN ;n and YN ;n.

When we model a virus which causes the host to act in
a way that spreads the virus, for example, causing the
host to sneeze, contact between hosts is not symmetric.
The contact scheme defined in Table 2 assumes that all
hosts initiate contact and that the parasite may be
passed equally from the initiator to the target or vice

versa. When infected hosts alone initiate contact then in
(3), the second term in the rate for decrease is halved to
lI cNjðN � jÞ=N. The AISG is unchanged except that the
C-branching rate is halved to mk=2.
5. Discussion

We have presented a model of the spread of a
vertically and horizontally transmitted virus in a
panmictic haploid host population of constant size.
The model allows for a selective advantage of suscep-
tible hosts over infected hosts. The parameters that
define the model are the population size, the transmis-
sion probability of the virus from parent to offspring,
the rate of infectious contact by which the virus is spread
horizontally, the rate of immigration of foreign hosts or
infection, and the level of selective advantage held by the
susceptible hosts. We have shown how to construct the
AISG which contains all information about the geneal-
ogy and the infection genealogy of a sample of hosts,
some of which may be infected. We noted that while the
interpretation and details of the AISG differ from the
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ancestral selection graph, the graphical structures are
identical. Thus, some results such as the expected time to
the ultimate ancestor derived for the ancestral selection
graph may be used in the context of the AISG. We
investigated the marginal distributions of the embedded
host and viral genealogies. We showed that the viral
genealogy can be simulated independently of the full
AISG by appropriate scaling of a standard coalescent
and that the host genealogy is embedded in a subgraph
of the AISG obtained by ignoring the contact branches.
These results, and our simulation studies, show that
both genealogies are sensitive to changes in any of the
contact, selection and non-transmission parameters.

Returning to the issue of whether it is appropriate to
use simple coalescent-based models of viral genealogies
to make inferences about host population dynamics, our
simulations show that horizontal and vertical transmis-
sion rates can influence population estimates. The
simplest estimate we can derive—an estimate of the
infected population size—using the simplest estimator
(the time to the most recent common ancestor) can be
biased—this is the message of Fig. 6. Direct use of the
coalescent to model inter-host viral genealogies may be
inappropriate. We may be better served by an integrated
model of viral and host genealogies. In this regard, it
seems likely that for real data, the efficiency of our
estimates will increase substantially if we had informa-
tion on both the viral and host genealogies for large
sample sizes, for serial data including sequences and
direct estimates of the infected population fraction
gathered at intervals from the population. This repre-
sents a future direction for our work.
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